3.2454 \(\int \frac{1}{\sqrt{d+e x} \sqrt{a+b x+c x^2}} \, dx\)

Optimal. Leaf size=189 \[ \frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{c \sqrt{d+e x} \sqrt{a+b x+c x^2}} \]

[Out]

(2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])
*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqr
t[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2
*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(c*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

_______________________________________________________________________________________

Rubi [A]  time = 0.324091, antiderivative size = 189, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083 \[ \frac{2 \sqrt{2} \sqrt{b^2-4 a c} \sqrt{-\frac{c \left (a+b x+c x^2\right )}{b^2-4 a c}} \sqrt{\frac{c (d+e x)}{2 c d-e \left (\sqrt{b^2-4 a c}+b\right )}} F\left (\sin ^{-1}\left (\frac{\sqrt{\frac{b+2 c x+\sqrt{b^2-4 a c}}{\sqrt{b^2-4 a c}}}}{\sqrt{2}}\right )|-\frac{2 \sqrt{b^2-4 a c} e}{2 c d-\left (b+\sqrt{b^2-4 a c}\right ) e}\right )}{c \sqrt{d+e x} \sqrt{a+b x+c x^2}} \]

Antiderivative was successfully verified.

[In]  Int[1/(Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2]),x]

[Out]

(2*Sqrt[2]*Sqrt[b^2 - 4*a*c]*Sqrt[(c*(d + e*x))/(2*c*d - (b + Sqrt[b^2 - 4*a*c])
*e)]*Sqrt[-((c*(a + b*x + c*x^2))/(b^2 - 4*a*c))]*EllipticF[ArcSin[Sqrt[(b + Sqr
t[b^2 - 4*a*c] + 2*c*x)/Sqrt[b^2 - 4*a*c]]/Sqrt[2]], (-2*Sqrt[b^2 - 4*a*c]*e)/(2
*c*d - (b + Sqrt[b^2 - 4*a*c])*e)])/(c*Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 50.7132, size = 178, normalized size = 0.94 \[ \frac{2 \sqrt{2} \sqrt{\frac{c \left (- d - e x\right )}{b e - 2 c d + e \sqrt{- 4 a c + b^{2}}}} \sqrt{\frac{c \left (a + b x + c x^{2}\right )}{4 a c - b^{2}}} \sqrt{- 4 a c + b^{2}} F\left (\operatorname{asin}{\left (\frac{\sqrt{2} \sqrt{\frac{b + 2 c x + \sqrt{- 4 a c + b^{2}}}{\sqrt{- 4 a c + b^{2}}}}}{2} \right )}\middle | \frac{2 e \sqrt{- 4 a c + b^{2}}}{b e - 2 c d + e \sqrt{- 4 a c + b^{2}}}\right )}{c \sqrt{d + e x} \sqrt{a + b x + c x^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/(e*x+d)**(1/2)/(c*x**2+b*x+a)**(1/2),x)

[Out]

2*sqrt(2)*sqrt(c*(-d - e*x)/(b*e - 2*c*d + e*sqrt(-4*a*c + b**2)))*sqrt(c*(a + b
*x + c*x**2)/(4*a*c - b**2))*sqrt(-4*a*c + b**2)*elliptic_f(asin(sqrt(2)*sqrt((b
 + 2*c*x + sqrt(-4*a*c + b**2))/sqrt(-4*a*c + b**2))/2), 2*e*sqrt(-4*a*c + b**2)
/(b*e - 2*c*d + e*sqrt(-4*a*c + b**2)))/(c*sqrt(d + e*x)*sqrt(a + b*x + c*x**2))

_______________________________________________________________________________________

Mathematica [C]  time = 1.57758, size = 308, normalized size = 1.63 \[ \frac{i (d+e x) \sqrt{2-\frac{4 \left (e (a e-b d)+c d^2\right )}{(d+e x) \left (\sqrt{e^2 \left (b^2-4 a c\right )}-b e+2 c d\right )}} \sqrt{\frac{2 \left (e (a e-b d)+c d^2\right )}{(d+e x) \left (\sqrt{e^2 \left (b^2-4 a c\right )}+b e-2 c d\right )}+1} F\left (i \sinh ^{-1}\left (\frac{\sqrt{2} \sqrt{\frac{c d^2-b e d+a e^2}{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}}}{\sqrt{d+e x}}\right )|-\frac{-2 c d+b e+\sqrt{\left (b^2-4 a c\right ) e^2}}{2 c d-b e+\sqrt{\left (b^2-4 a c\right ) e^2}}\right )}{e \sqrt{a+x (b+c x)} \sqrt{\frac{e (a e-b d)+c d^2}{\sqrt{e^2 \left (b^2-4 a c\right )}+b e-2 c d}}} \]

Antiderivative was successfully verified.

[In]  Integrate[1/(Sqrt[d + e*x]*Sqrt[a + b*x + c*x^2]),x]

[Out]

(I*(d + e*x)*Sqrt[2 - (4*(c*d^2 + e*(-(b*d) + a*e)))/((2*c*d - b*e + Sqrt[(b^2 -
 4*a*c)*e^2])*(d + e*x))]*Sqrt[1 + (2*(c*d^2 + e*(-(b*d) + a*e)))/((-2*c*d + b*e
 + Sqrt[(b^2 - 4*a*c)*e^2])*(d + e*x))]*EllipticF[I*ArcSinh[(Sqrt[2]*Sqrt[(c*d^2
 - b*d*e + a*e^2)/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])])/Sqrt[d + e*x]], -((
-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])/(2*c*d - b*e + Sqrt[(b^2 - 4*a*c)*e^2]))
])/(e*Sqrt[(c*d^2 + e*(-(b*d) + a*e))/(-2*c*d + b*e + Sqrt[(b^2 - 4*a*c)*e^2])]*
Sqrt[a + x*(b + c*x)])

_______________________________________________________________________________________

Maple [A]  time = 0.051, size = 287, normalized size = 1.5 \[{\frac{\sqrt{2}}{ce \left ( ce{x}^{3}+be{x}^{2}+cd{x}^{2}+aex+bdx+ad \right ) } \left ( -e\sqrt{-4\,ac+{b}^{2}}-be+2\,cd \right ){\it EllipticF} \left ( \sqrt{2}\sqrt{-{ \left ( ex+d \right ) c \left ( e\sqrt{-4\,ac+{b}^{2}}+be-2\,cd \right ) ^{-1}}},\sqrt{-{1 \left ( e\sqrt{-4\,ac+{b}^{2}}+be-2\,cd \right ) \left ( 2\,cd-be+e\sqrt{-4\,ac+{b}^{2}} \right ) ^{-1}}} \right ) \sqrt{{e \left ( b+2\,cx+\sqrt{-4\,ac+{b}^{2}} \right ) \left ( e\sqrt{-4\,ac+{b}^{2}}+be-2\,cd \right ) ^{-1}}}\sqrt{{e \left ( -b-2\,cx+\sqrt{-4\,ac+{b}^{2}} \right ) \left ( 2\,cd-be+e\sqrt{-4\,ac+{b}^{2}} \right ) ^{-1}}}\sqrt{-{ \left ( ex+d \right ) c \left ( e\sqrt{-4\,ac+{b}^{2}}+be-2\,cd \right ) ^{-1}}}\sqrt{ex+d}\sqrt{c{x}^{2}+bx+a}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/(e*x+d)^(1/2)/(c*x^2+b*x+a)^(1/2),x)

[Out]

(-e*(-4*a*c+b^2)^(1/2)-b*e+2*c*d)/c*EllipticF(2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2
)^(1/2)+b*e-2*c*d))^(1/2),(-(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d)/(2*c*d-b*e+e*(-4*a*
c+b^2)^(1/2)))^(1/2))*(e*(b+2*c*x+(-4*a*c+b^2)^(1/2))/(e*(-4*a*c+b^2)^(1/2)+b*e-
2*c*d))^(1/2)*(e*(-b-2*c*x+(-4*a*c+b^2)^(1/2))/(2*c*d-b*e+e*(-4*a*c+b^2)^(1/2)))
^(1/2)*2^(1/2)*(-(e*x+d)*c/(e*(-4*a*c+b^2)^(1/2)+b*e-2*c*d))^(1/2)/e*(e*x+d)^(1/
2)*(c*x^2+b*x+a)^(1/2)/(c*e*x^3+b*e*x^2+c*d*x^2+a*e*x+b*d*x+a*d)

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{c x^{2} + b x + a} \sqrt{e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)), x)

_______________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \[{\rm integral}\left (\frac{1}{\sqrt{c x^{2} + b x + a} \sqrt{e x + d}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)),x, algorithm="fricas")

[Out]

integral(1/(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)), x)

_______________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{d + e x} \sqrt{a + b x + c x^{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(e*x+d)**(1/2)/(c*x**2+b*x+a)**(1/2),x)

[Out]

Integral(1/(sqrt(d + e*x)*sqrt(a + b*x + c*x**2)), x)

_______________________________________________________________________________________

GIAC/XCAS [F]  time = 0., size = 0, normalized size = 0. \[ \int \frac{1}{\sqrt{c x^{2} + b x + a} \sqrt{e x + d}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^2 + b*x + a)*sqrt(e*x + d)), x)